Locally Maximal Embeddings of Graphs in Orientable Surfaces

Martin Škoviera

Comenius University, Bratislava

joint work with Michal Kotrbčík

Embedded Graphs, Saint Petersburg, 28th October, 2014

Martin Škoviera (Bratislava)

Locally maximal embeddings

Embedded Graphs, SPb, 2014 1 / 26

We study 2-*cell embeddings* $G \hookrightarrow S$ of a <u>fixed</u> graph G in compact orientable surfaces.

Graphs are connected, parallel edges and loop are allowed.

If a graph G has a 2-cell embedding in orientable surfaces of genera g and h with $g \le h$, then it has a 2-cell embedding in the surface of genus k for each k such that $g \le k \le h$.

If a graph G has a 2-cell embedding in orientable surfaces of genera g and h with $g \le h$, then it has a 2-cell embedding in the surface of genus k for each k such that $g \le k \le h$.

In order to determine the entire embedding range of G it is sufficient to determine

- $\gamma(G)$ minimum genus of G
- $\gamma_M(G)$ maximum genus of G

If a graph G has a 2-cell embedding in orientable surfaces of genera g and h with $g \le h$, then it has a 2-cell embedding in the surface of genus k for each k such that $g \le k \le h$.

In order to determine the entire embedding range of ${\cal G}$ it is sufficient to determine

- $\gamma(G)$ minimum genus of G
- $\gamma_M(G)$ maximum genus of G

Apart from Duke's Theorem, very little is known about the genus distribution of general graphs.

If a graph G has a 2-cell embedding in orientable surfaces of genera g and h with $g \le h$, then it has a 2-cell embedding in the surface of genus k for each k such that $g \le k \le h$.

In order to determine the entire embedding range of G it is sufficient to determine

- $\gamma(G)$ minimum genus of G
- $\gamma_M(G)$ maximum genus of G

Apart from Duke's Theorem, very little is known about the genus distribution of general graphs.

This talk:

Embeddings close to maximum genus and their properties.

Martin Škoviera (Bratislava)

Locally maximal embeddings

Determining the genus of a graph is difficult [Thomassen, 1989]. In contrast, maximum genus is much better understood:

Determining the genus of a graph is difficult [Thomassen, 1989]. In contrast, maximum genus is much better understood:

Theorem (Xuong, 1979)

The maximum genus of a graph equals the maximum # of disjoint pairs of adjacent edges whose removal leaves a connected spanning subgraph.

Determining the genus of a graph is difficult [Thomassen, 1989]. In contrast, maximum genus is much better understood:

Theorem (Xuong, 1979)

The maximum genus of a graph equals the maximum # of disjoint pairs of adjacent edges whose removal leaves a connected spanning subgraph.

Determining the genus of a graph is difficult [Thomassen, 1989]. In contrast, maximum genus is much better understood:

Theorem (Xuong, 1979)

The maximum genus of a graph equals the maximum # of disjoint pairs of adjacent edges whose removal leaves a connected spanning subgraph.

By Euler-Poincaré:

 $\gamma_M(G) \leq \beta(G)/2$

where $\beta(G)$ is the *Betti number* of *G* (i.e., # edges - # vertices + 1).

By Euler-Poincaré:

$$\gamma_M(G) \leq \beta(G)/2$$

where $\beta(G)$ is the *Betti number* of G (i.e., # edges - # vertices + 1).

Definition

The deficiency of G is the quantity $\xi(G) = \beta(G) - 2\gamma_M(G)$.

$\xi(G) = \min (\# \text{faces in a 2-cell embedding of } G) - 1$

By Euler-Poincaré:

$$\gamma_M(G) \leq \beta(G)/2$$

where $\beta(G)$ is the *Betti number* of G (i.e., # edges - # vertices + 1).

Definition The *deficiency* of G is the quantity $\xi(G) = \beta(G) - 2\gamma_M(G)$.

$$\xi(G) = \min(\# \text{faces in a 2-cell embedding of } G) - 1$$

Definition

Graphs for which $\xi \leq 1$ are called *upper embeddable*.

Equivalently, G is upper embeddable if $\gamma_M = \lfloor \beta/2 \rfloor$.

Martin Škoviera (Bratislava)

Locally maximal embeddings

Theorem 1 (Xuong, 1979)

 $\xi(G) = \min \#$ of edge-odd components in a cotree of G

Theorem 2 (Nebeský, 1981)

$$\xi(G) = \max\{c(G - A) + oc(G - A) - |A| - 1; A \subseteq E(G)\}$$

c = # of components oc = # of components with odd Betti number

Computing the maximum genus

There exist two different polynomial-time algorithms for determining the maximum genus of a graph:

• Glukhov (1981)

algorithm based on the min-max characterisation of $\gamma_{\it M}$

• Furst, Gross, McGeoch (1988)

algorithm based on determining the max # of disjoint adjacent pairs of edges via reduction to the matroid parity problem

Computing the maximum genus

There exist two different polynomial-time algorithms for determining the maximum genus of a graph:

• Glukhov (1981)

algorithm based on the min-max characterisation of γ_{M}

• Furst, Gross, McGeoch (1988)

algorithm based on determining the max # of disjoint adjacent pairs of edges via reduction to the matroid parity problem

Theorem (Chen et al., 1993)

There is a polynomial-time algorithm that for an input graph G either produces an embedding of genus $\gamma_M(G) - 1$ or verifies that $\gamma_M(G) = 0$.

Computing the maximum genus

There exist two different polynomial-time algorithms for determining the maximum genus of a graph:

• Glukhov (1981)

algorithm based on the min-max characterisation of γ_{M}

• Furst, Gross, McGeoch (1988)

algorithm based on determining the max # of disjoint adjacent pairs of edges via reduction to the matroid parity problem

Theorem (Chen et al., 1993)

There is a polynomial-time algorithm that for an input graph G either produces an embedding of genus $\gamma_M(G) - 1$ or verifies that $\gamma_M(G) = 0$.

Question

Can we say something more about embeddings close to γ_M ?

Martin Škoviera (Bratislava)

Locally maximal embeddings

Representation of graph embeddings by rotations

Every 2-cell embedding $G \hookrightarrow S$ can be represented by a pair of permutations (R, L) acting on the set D(G) of all directed edges, the *darts* of G:

• R ... cyclically permutes darts with the same initial vertex

 $R = \prod_{\nu} R_{\nu} \quad \dots \quad \text{the rotation of the embedding}$ • L ... reverses the direction of each dart, i. e., $x \mapsto x^{-1}$

Conversely, given such a pair of permutations

cycles of R ... vertices cycles of L ... edges cycles of RL ... faces incidence ... nonempty intersection

Martin Škoviera (Bratislava)

Gross & Tucker (1979):

There is a natural notion of adjacency between embeddings of a fixed graph G which gives rise to a stratified system of embeddings.

- Two embeddings of *G* are adjacent if they can be obtained from each other by moving a single dart to a different position in the local rotation at some vertex.
- Strata are formed by embeddings of the same genus.

Gross & Tucker (1979):

There is a natural notion of adjacency between embeddings of a fixed graph G which gives rise to a stratified system of embeddings.

- Two embeddings of *G* are adjacent if they can be obtained from each other by moving a single dart to a different position in the local rotation at some vertex.
- Strata are formed by embeddings of the same genus.

Definition

An embedding $G \hookrightarrow S$ is said to be *locally maximal* if it is not adjacent to any embedding in a higher stratum.

Basic questions about locally maximal embeddings

Questions:

- How deep below γ_M can locally maximal embeddings occur?
- How are they distributed?
- How to construct locally maximal?
- Can we perhaps characterise locally maximal embeddings combinatorially?
- ... and so on.

Rotation moves

Let $G \hookrightarrow S$ be an embedding with rotation R.

• 1. Move of a dart (elementary move):

$$R_v = (axbAcd) \rightarrow (abAcxd) = R'_v$$

• 2. Interchange of two darts at a vertex:

$$R_v = (axbAcyd) \rightarrow (aybAcxd) = R'_v$$

• 3. Move of an edge: move of one of both darts of an edge.

Rotation moves

Let $G \hookrightarrow S$ be an embedding with rotation R.

• 1. Move of a dart (elementary move):

$$R_v = (axbAcd) \rightarrow (abAcxd) = R'_v$$

• 2. Interchange of two darts at a vertex:

$$R_v = (axbAcyd) \rightarrow (aybAcxd) = R'_v$$

• 3. Move of an edge: move of one of both darts of an edge.

Observation

Every rotation move changes the number of faces of an embedding by -2, 0, or +2, and the genus by -1, 0, or 1.

Martin Škoviera (Bratislava)

The following statements are equivalent for a 2-cell embedding $\Pi: G \hookrightarrow S$.

- (i) Π is locally maximal, i. e., moving any dart to a different position in the local rotation at some vertex will not increase the genus of Π .
- (ii) The genus of Π does not increase by any rotation move.
- (iii) Every vertex is incident with at most two faces of Π .

(i) locally maximal \Leftrightarrow (iii) every vertex in at most two faces

(i) locally maximal \Leftrightarrow (iii) every vertex in at most two faces

Proof.

(iii) \Rightarrow (i):

An elementary move changes # of faces by 0 or ± 2 , but -2 is impossible.

(i) locally maximal \Leftrightarrow (iii) every vertex in at most two faces

Proof.

(iii) \Rightarrow (i):

An elementary move changes # of faces by 0 or ± 2 , but -2 is impossible.

(i) \Rightarrow (iii):

(i) locally maximal \Leftrightarrow (iii) every vertex in at most two faces

Proof.

 $(iii) \Rightarrow (i):$

An elementary move changes # of faces by 0 or ± 2 , but -2 is impossible.

(i) \Rightarrow (iii):

 Let v be a vertex incident with three distinct faces. There is an edge f at v separating two faces. Let e = R⁻¹(f), g = R(f). There is a corner xy at v belonging to a third face.

(i) locally maximal \Leftrightarrow (iii) every vertex in at most two faces

Proof.

 $(iii) \Rightarrow (i):$

An elementary move changes # of faces by 0 or ± 2 , but -2 is impossible.

(i) \Rightarrow (iii):

 Let v be a vertex incident with three distinct faces. There is an edge f at v separating two faces. Let e = R⁻¹(f), g = R(f). There is a corner xy at v belonging to a third face.

•
$$R_v = (efgAxy)$$

 $F_1 = (e^{-1}fB), F_2 = (f^{-1}gC), F_3 = (x^{-1}yD)$

(i) locally maximal \Leftrightarrow (iii) every vertex in at most two faces

Proof.

 $(iii) \Rightarrow (i):$

An elementary move changes # of faces by 0 or ± 2 , but -2 is impossible.

(i) \Rightarrow (iii):

- Let v be a vertex incident with three distinct faces. There is an edge f at v separating two faces. Let e = R⁻¹(f), g = R(f). There is a corner xy at v belonging to a third face.
- $R_v = (efgAxy)$ $F_1 = (e^{-1}fB), F_2 = (f^{-1}gC), F_3 = (x^{-1}yD)$
- Perform $(efgAxy) \rightarrow (egAxfy)$.

Then $(e^{-1}fB)(f^{-1}gC)(x^{-1}yD) \to (x^{-1}fBe^{-1}gCf^{-1}yD)$

Basic properties: 2. Absence of strict maxima

Theorem (Gross, Rieper, 1991; Kotrbčík & S., 2014+)

Every 2-cell embedding of a connected graph in an orientable surface can be transformed into a maximum genus embedding by a sequence of dart moves that never decrease the genus.

Basic properties: 2. Absence of strict maxima

Theorem (Gross, Rieper, 1991; Kotrbčík & S., 2014+)

Every 2-cell embedding of a connected graph in an orientable surface can be transformed into a maximum genus embedding by a sequence of dart moves that never decrease the genus.

Proof.

- Move only *bifacial* edges, i.e., edges on the boundary of two faces.
- Let $\Pi_0: G \hookrightarrow S_g$ be an arbitrary embedding of G.
- Take a Xuong spanning tree T ⊆ G corresponding to a maximum genus embedding Π₁: G ↔ S_h.
- There exists a set X_1 of cotree edges that are bifacial in Π_1 s.t. $G X_1$ embeds with a single face in S_h .
- X₁ is modified and extended to get a suitable set X₀ s.t. G − X₀ embeds with a single face in S_g. Etc.

Let $\lambda(G)$ be the maximum number of faces in a locally maximal embedding of a graph G. Then

 $\lambda(G) \leq \mu(G) + 1$

where $\mu(G)$ denotes the maximum number of disjoint cycles in G.

Theorem

Let $\lambda(G)$ be the maximum number of faces in a locally maximal embedding of a graph G. Then

 $\lambda(G) \leq \mu(G) + 1$

where $\mu(G)$ denotes the maximum number of disjoint cycles in G.

Proof.

Let $\lambda(G)$ be the maximum number of faces in a locally maximal embedding of a graph G. Then

 $\lambda(G) \leq \mu(G) + 1$

where $\mu(G)$ denotes the maximum number of disjoint cycles in G.

Proof.

Consider a locally maximal embedding Π with max # of faces.

Let $\lambda(G)$ be the maximum number of faces in a locally maximal embedding of a graph G. Then

 $\lambda(G) \leq \mu(G) + 1$

where $\mu(G)$ denotes the maximum number of disjoint cycles in G.

Proof.

Consider a locally maximal embedding Π with max # of faces.

For a face F, consider its reduced boundary Bd(F) consisting of all bifacial edges of Bd(F). A seed of Π is a connected component of Bd(F), where F is any face of Π.

Let $\lambda(G)$ be the maximum number of faces in a locally maximal embedding of a graph G. Then

 $\lambda(G) \leq \mu(G) + 1$

where $\mu(G)$ denotes the maximum number of disjoint cycles in G.

Proof.

Consider a locally maximal embedding Π with max # of faces.

- For a face F, consider its reduced boundary Bd(F) consisting of all bifacial edges of Bd(F). A seed of Π is a connected component of Bd(F), where F is any face of Π.
- Each seed contains a cycle.

Let $\lambda(G)$ be the maximum number of faces in a locally maximal embedding of a graph G. Then

$$\lambda(G) \leq \mu(G) + 1$$

where $\mu(G)$ denotes the maximum number of disjoint cycles in G.

Proof.

Consider a locally maximal embedding Π with max # of faces.

- For a face F, consider its reduced boundary Bd(F) consisting of all bifacial edges of Bd(F). A seed of Π is a connected component of Bd(F), where F is any face of Π.
- Each seed contains a cycle.
- Distinct seeds of Π are disjoint.

Proof (cont.).

 Let H be a seed of Π arising from a face F. Each edge e ∈ H belongs to the boundary of some other face F_e ≠ F.

- Let H be a seed of Π arising from a face F. Each edge e ∈ H belongs to the boundary of some other face F_e ≠ F.
- If $e, g \in H$ are incident with a common vertex v, then $F_e = F_g$.

- Let H be a seed of Π arising from a face F. Each edge e ∈ H belongs to the boundary of some other face F_e ≠ F.
- If $e, g \in H$ are incident with a common vertex v, then $F_e = F_g$.
- By connectivity, each seed lies within the boundaries of exactly two distinct faces.

- Let H be a seed of Π arising from a face F. Each edge e ∈ H belongs to the boundary of some other face F_e ≠ F.
- If $e, g \in H$ are incident with a common vertex v, then $F_e = F_g$.
- By connectivity, each seed lies within the boundaries of exactly two distinct faces.
- Form a graph \mathcal{F}_{Π} whose vertices are the faces and edges correspond to seeds.

- Let H be a seed of Π arising from a face F. Each edge e ∈ H belongs to the boundary of some other face F_e ≠ F.
- If $e, g \in H$ are incident with a common vertex v, then $F_e = F_g$.
- By connectivity, each seed lies within the boundaries of exactly two distinct faces.
- Form a graph \mathcal{F}_{Π} whose vertices are the faces and edges correspond to seeds.
- Estimate the number of vertices of \mathcal{F}_{Π} :

$$\lambda(G) = (\#$$
vertices $\mathcal{F}_{\Pi}) \leq (\#$ edges $\mathcal{F}_{\Pi}) + 1 \leq \mu(G) + 1.$

Locally maximal genus

Definition

The *locally maximal genus* of a graph G, denoted by $\gamma_L(G)$, is the smallest genus of an orientable surface upon which G has a locally maximal embedding.

Locally maximal genus

Definition

The *locally maximal genus* of a graph G, denoted by $\gamma_L(G)$, is the smallest genus of an orientable surface upon which G has a locally maximal embedding.

Definition

The reduced Betti number of a graph G is the quantity $\beta'(G) = \beta(G) - \mu(G).$

Locally maximal genus

Definition

The *locally maximal genus* of a graph G, denoted by $\gamma_L(G)$, is the smallest genus of an orientable surface upon which G has a locally maximal embedding.

Definition

The reduced Betti number of a graph G is the quantity

$$\beta'(G) = \beta(G) - \mu(G).$$

Theorem

(iii)

The following inequalities hold for every connected graph G:

(i)
$$\gamma(G) \leq \beta'(G)/2 \leq \gamma_L(G) \leq \gamma_M(G) \leq \beta(G)/2$$

(ii)
$$\beta'(G)/2 \le \gamma_L(G) \le \gamma_M(G) \le \beta'(G)$$

$$\gamma_{M}(G)/2 \leq \gamma_{L}(G) \leq \gamma_{M}(G)$$

Martin Škoviera (Bratislava)

Lower embeddable graphs

Definition

A graph G is lower embeddable if
$$\gamma_L(G) = \lceil \beta'(G)/2 \rceil$$
.

A lower embeddable graph has a locally maximal embedding with $\mu(G) + 1$ or $\mu(G)$ faces depending on whether $\beta'(G)$ is even or odd.

Lower embeddable graphs

Definition

A graph G is lower embeddable if
$$\gamma_L(G) = \lceil \beta'(G)/2 \rceil$$
.

A lower embeddable graph has a locally maximal embedding with $\mu(G) + 1$ or $\mu(G)$ faces depending on whether $\beta'(G)$ is even or odd.

Theorem

Graphs in each of the following classes are lower embeddable:

- complete graphs K_n
- complete bipartite graphs K_{m,n}
- n-cubes Q_n
- complete tripartite graphs K_{n,n,n}

Proof.

It is sufficient to construct locally maximal embeddings of these graphs with either $\mu+1$ or μ faces, depending on the parity of $\beta'.$

- Construct an inclusion minimal connected spanning subgraph H ⊆ G with either µ or µ − 1 disjoint cycles such that the rest of G can be decomposed into pairs of adjacent edges.
- Embed *H* in the 2-sphere.
- Add a pair of adjacent edges to increase the genus by 1, and repeat.

Proof.

It is sufficient to construct locally maximal embeddings of these graphs with either $\mu+1$ or μ faces, depending on the parity of $\beta'.$

- Construct an inclusion minimal connected spanning subgraph H ⊆ G with either µ or µ − 1 disjoint cycles such that the rest of G can be decomposed into pairs of adjacent edges.
- Embed *H* in the 2-sphere.
- Add a pair of adjacent edges to increase the genus by 1, and repeat.

Bad news: This method does not work in general.

Not every locally maximal embedding can be constructed by adding pairs of adjacent edges!

Bad news: This method does not work in general.

Not every locally maximal embedding can be constructed by adding pairs of adjacent edges!

Graphs with no proper locally maximal embeddings

Theorem

The following statements are equivalent for a connected graph G.

- (i) $\lceil \beta'(G)/2 \rceil = \lfloor \beta(G)/2 \rfloor$
- (ii) G is both upper embeddable and lower embeddable, and $\gamma_L(G) = \gamma_M(G)$.
- (iii) Either $\mu(G) \leq 1$, or $\mu(G) = 2$ and $\beta(G)$ is odd.

Graphs with no proper locally maximal embeddings

Theorem

The following statements are equivalent for a connected graph G.

- (i) $\lceil \beta'(G)/2 \rceil = \lfloor \beta(G)/2 \rfloor$
- (ii) G is both upper embeddable and lower embeddable, and $\gamma_L(G) = \gamma_M(G)$.
- (iii) Either $\mu(G) \leq 1$, or $\mu(G) = 2$ and $\beta(G)$ is odd.

Graphs with $\mu = 1$ were completely described by Lovász (1965). They include

- bouquets of circles, dipoles, triangles with multiple edges, wheels multiple edges on the outer rim
- complete bipartite graphs $K_{3,n}$ with arbitrarily many edges added within the 3-element partite set, ...

Characterisation of graphs with $\mu = 2$ is not known.

Martin Škoviera (Bratislava)

Further results (sample)

Theorem

Locally maximal genus is additive over bridges.

Theorem

If G is a vertex-amalgation of G_1 and G_2 , then

$$\gamma_L(G) = \gamma_L(G_1) + \gamma_L(G_2) - c,$$

where the constant c is either 0 or 1, depending on G_1 and G_2 .

Theorem

Let G be a connected graph and e not a bridge of G. Then

$$\gamma_L(G) - 1 \leq \gamma_L(G - e) \leq \gamma_L(G).$$

Martin Škoviera (Bratislava)

Locally maximal embeddings

Problems:

1. What is the distribution of locally maximal embeddings of a graph?

Problems:

1. What is the distribution of locally maximal embeddings of a graph?

2. Does there exist a non-planar graph G satisfying $\gamma_L(G) = \gamma(G)$?

Problems:

1. What is the distribution of locally maximal embeddings of a graph?

2. Does there exist a non-planar graph G satisfying $\gamma_L(G) = \gamma(G)$?

3. How difficult is to determine $\gamma_L(G)$?

Problems:

1. What is the distribution of locally maximal embeddings of a graph?

2. Does there exist a non-planar graph G satisfying $\gamma_L(G) = \gamma(G)$?

3. How difficult is to determine $\gamma_L(G)$?

- The natural upper bound on the number of faces in a locally maximal embedding is μ(G) + 1.
- Determining $\mu(G)$ is NP-complete.
- Determining $\gamma_L(G)$ might still be polynomial.

Problems:

1. What is the distribution of locally maximal embeddings of a graph?

2. Does there exist a non-planar graph G satisfying $\gamma_L(G) = \gamma(G)$?

3. How difficult is to determine $\gamma_L(G)$?

- The natural upper bound on the number of faces in a locally maximal embedding is μ(G) + 1.
- Determining $\mu(G)$ is NP-complete.
- Determining $\gamma_L(G)$ might still be polynomial.
- 4. Are all 4-edge-connected graphs and all edge-transitive graphs lower-embeddable?

Martin Škoviera (Bratislava)

Locally maximal embeddings

Thank you!