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Introduction

We study 2-cell embeddings G →֒ S of a fixed graph G

in compact orientable surfaces.

Graphs are connected, parallel edges and loop are allowed.
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Duke’s Interpolation Theorem

Theorem (Duke, 1966)

If a graph G has a 2-cell embedding in orientable surfaces of genera g and

h with g ≤ h, then it has a 2-cell embedding in the surface of genus k for

each k such that g ≤ k ≤ h.
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If a graph G has a 2-cell embedding in orientable surfaces of genera g and

h with g ≤ h, then it has a 2-cell embedding in the surface of genus k for

each k such that g ≤ k ≤ h.

In order to determine the entire embedding range of G it is sufficient to
determine

γ(G ) minimum genus of G

γM(G ) maximum genus of G

Martin Škoviera (Bratislava) Locally maximal embeddings Embedded Graphs, SPb, 2014 3 / 26



Duke’s Interpolation Theorem

Theorem (Duke, 1966)

If a graph G has a 2-cell embedding in orientable surfaces of genera g and

h with g ≤ h, then it has a 2-cell embedding in the surface of genus k for

each k such that g ≤ k ≤ h.

In order to determine the entire embedding range of G it is sufficient to
determine

γ(G ) minimum genus of G

γM(G ) maximum genus of G

Apart from Duke’s Theorem, very little is known about the genus
distribution of general graphs.
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Duke’s Interpolation Theorem

Theorem (Duke, 1966)

If a graph G has a 2-cell embedding in orientable surfaces of genera g and

h with g ≤ h, then it has a 2-cell embedding in the surface of genus k for

each k such that g ≤ k ≤ h.

In order to determine the entire embedding range of G it is sufficient to
determine

γ(G ) minimum genus of G

γM(G ) maximum genus of G

Apart from Duke’s Theorem, very little is known about the genus
distribution of general graphs.

This talk:
Embeddings close to maximum genus and their properties.
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Maximum genus

Determining the genus of a graph is difficult [Thomassen, 1989].
In contrast, maximum genus is much better understood:
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Theorem (Xuong, 1979)

The maximum genus of a graph equals the maximum # of disjoint pairs of

adjacent edges whose removal leaves a connected spanning subgraph.
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‘Good’ characterisation of maximum genus

By Euler-Poincaré:
γM(G ) ≤ β(G )/2

where β(G ) is the Betti number of G (i.e., # edges − # vertices + 1).
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‘Good’ characterisation of maximum genus

By Euler-Poincaré:
γM(G ) ≤ β(G )/2

where β(G ) is the Betti number of G (i.e., # edges − # vertices + 1).

Definition

The deficiency of G is the quantity ξ(G ) = β(G )− 2γM(G ).

ξ(G ) = min (#faces in a 2-cell embedding of G)− 1
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‘Good’ characterisation of maximum genus

By Euler-Poincaré:
γM(G ) ≤ β(G )/2

where β(G ) is the Betti number of G (i.e., # edges − # vertices + 1).

Definition

The deficiency of G is the quantity ξ(G ) = β(G )− 2γM(G ).

ξ(G ) = min (#faces in a 2-cell embedding of G)− 1

Definition

Graphs for which ξ ≤ 1 are called upper embeddable.

Equivalently, G is upper embeddable if γM = ⌊β/2⌋.
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‘Good’ characterisation of maximum genus

Theorem 1 (Xuong, 1979)

ξ(G ) = min# of edge-odd components in a cotree of G

Theorem 2 (Nebeský, 1981)

ξ(G ) = max{c(G − A) + oc(G − A)− |A| − 1; A ⊆ E (G )}

c = # of components oc = # of components with odd Betti number
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Computing the maximum genus

There exist two different polynomial-time algorithms for determining the
maximum genus of a graph:

Glukhov (1981)
algorithm based on the min-max characterisation of γM

Furst, Gross, McGeoch (1988)
algorithm based on determining the max # of disjoint adjacent pairs
of edges via reduction to the matroid parity problem
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Computing the maximum genus

There exist two different polynomial-time algorithms for determining the
maximum genus of a graph:

Glukhov (1981)
algorithm based on the min-max characterisation of γM

Furst, Gross, McGeoch (1988)
algorithm based on determining the max # of disjoint adjacent pairs
of edges via reduction to the matroid parity problem

Theorem (Chen et al., 1993)

There is a polynomial-time algorithm that for an input graph G either

produces an embedding of genus γM(G )− 1 or verifies that γM(G ) = 0.
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Computing the maximum genus

There exist two different polynomial-time algorithms for determining the
maximum genus of a graph:

Glukhov (1981)
algorithm based on the min-max characterisation of γM

Furst, Gross, McGeoch (1988)
algorithm based on determining the max # of disjoint adjacent pairs
of edges via reduction to the matroid parity problem

Theorem (Chen et al., 1993)

There is a polynomial-time algorithm that for an input graph G either

produces an embedding of genus γM(G )− 1 or verifies that γM(G ) = 0.

Question

Can we say something more about embeddings close to γM?
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Representation of graph embeddings by rotations

Every 2-cell embedding G →֒ S can be represented by a pair of
permutations (R , L) acting on the set D(G ) of all directed edges,
the darts of G :

R . . . cyclically permutes darts with the same initial vertex

R =
∏

v Rv . . . the rotation of the embedding

L . . . reverses the direction of each dart, i. e., x 7→ x−1

Conversely, given such a pair of permutations

cycles of R . . . vertices
cycles of L . . . edges
cycles of RL . . . faces

incidence . . . nonempty intersection
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Stratified systems and locally maximal embeddings

Gross & Tucker (1979):
There is a natural notion of adjacency between embeddings of a fixed
graph G which gives rise to a stratified system of embeddings.

Two embeddings of G are adjacent if they can be obtained from
each other by moving a single dart to a different position in the
local rotation at some vertex.

Strata are formed by embeddings of the same genus.
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Stratified systems and locally maximal embeddings

Gross & Tucker (1979):
There is a natural notion of adjacency between embeddings of a fixed
graph G which gives rise to a stratified system of embeddings.

Two embeddings of G are adjacent if they can be obtained from
each other by moving a single dart to a different position in the
local rotation at some vertex.

Strata are formed by embeddings of the same genus.

Definition

An embedding G →֒ S is said to be locally maximal if it is not adjacent to
any embedding in a higher stratum.
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Basic questions about locally maximal embeddings

Questions:

How deep below γM can locally maximal embeddings occur?

How are they distributed?

How to construct locally maximal?

Can we perhaps characterise locally maximal embeddings
combinatorially?

. . . and so on.
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Rotation moves

Let G →֒ S be an embedding with rotation R .

1. Move of a dart (elementary move):

Rv = (axbAcd) → (abAcxd) = R ′

v

2. Interchange of two darts at a vertex:

Rv = (axbAcyd) → (aybAcxd) = R ′

v

3. Move of an edge: move of one of both darts of an edge.
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Rotation moves

Let G →֒ S be an embedding with rotation R .

1. Move of a dart (elementary move):

Rv = (axbAcd) → (abAcxd) = R ′

v

2. Interchange of two darts at a vertex:

Rv = (axbAcyd) → (aybAcxd) = R ′

v

3. Move of an edge: move of one of both darts of an edge.

Observation

Every rotation move changes the number of faces of an embedding by

−2, 0, or +2, and the genus by −1, 0, or 1.

Martin Škoviera (Bratislava) Locally maximal embeddings Embedded Graphs, SPb, 2014 12 / 26



Basic properties: 1. Topological description

Theorem

The following statements are equivalent for a 2-cell embedding

Π: G →֒ S.

(i) Π is locally maximal, i. e., moving any dart to a different position in

the local rotation at some vertex will not increase the genus of Π.

(ii) The genus of Π does not increase by any rotation move.

(iii) Every vertex is incident with at most two faces of Π.
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Basic properties: 1. Topological description

(i) locally maximal ⇔ (iii) every vertex in at most two faces
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Basic properties: 1. Topological description

(i) locally maximal ⇔ (iii) every vertex in at most two faces

Proof.

(iii) ⇒ (i):
An elementary move changes # of faces by 0 or ±2, but −2 is impossible.
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Proof.

(iii) ⇒ (i):
An elementary move changes # of faces by 0 or ±2, but −2 is impossible.

(i) ⇒ (iii):
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Basic properties: 1. Topological description

(i) locally maximal ⇔ (iii) every vertex in at most two faces

Proof.

(iii) ⇒ (i):
An elementary move changes # of faces by 0 or ±2, but −2 is impossible.

(i) ⇒ (iii):

Let v be a vertex incident with three distinct faces. There is
an edge f at v separating two faces. Let e = R−1(f ), g = R(f ).
There is a corner xy at v belonging to a third face.
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Basic properties: 1. Topological description

(i) locally maximal ⇔ (iii) every vertex in at most two faces

Proof.

(iii) ⇒ (i):
An elementary move changes # of faces by 0 or ±2, but −2 is impossible.

(i) ⇒ (iii):

Let v be a vertex incident with three distinct faces. There is
an edge f at v separating two faces. Let e = R−1(f ), g = R(f ).
There is a corner xy at v belonging to a third face.

Rv = (efgAxy)
F1 = (e−1fB), F2 = (f −1gC ), F3 = (x−1yD)
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Basic properties: 1. Topological description

(i) locally maximal ⇔ (iii) every vertex in at most two faces

Proof.

(iii) ⇒ (i):
An elementary move changes # of faces by 0 or ±2, but −2 is impossible.

(i) ⇒ (iii):

Let v be a vertex incident with three distinct faces. There is
an edge f at v separating two faces. Let e = R−1(f ), g = R(f ).
There is a corner xy at v belonging to a third face.

Rv = (efgAxy)
F1 = (e−1fB), F2 = (f −1gC ), F3 = (x−1yD)

Perform (ef gAxy) → (egAxf y).

Then (e−1fB)(f −1gC )(x−1yD) → (x−1fBe−1gCf −1yD)
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Basic properties: 2. Absence of strict maxima

Theorem (Gross, Rieper, 1991; Kotrbč́ık & S., 2014+)

Every 2-cell embedding of a connected graph in an orientable surface can

be transformed into a maximum genus embedding by a sequence of dart

moves that never decrease the genus.
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Basic properties: 2. Absence of strict maxima

Theorem (Gross, Rieper, 1991; Kotrbč́ık & S., 2014+)

Every 2-cell embedding of a connected graph in an orientable surface can

be transformed into a maximum genus embedding by a sequence of dart

moves that never decrease the genus.

Proof.

Move only bifacial edges, i.e., edges on the boundary of two faces.

Let Π0 : G →֒ Sg be an arbitrary embedding of G .

Take a Xuong spanning tree T ⊆ G corresponding to a maximum
genus embedding Π1 : G →֒ Sh.

There exists a set X1 of cotree edges that are bifacial in Π1 s.t.
G − X1 embeds with a single face in Sh.

X1 is modified and extended to get a suitable set X0 s.t. G − X0

embeds with a single face in Sg . Etc.
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Basic properties: 3. Bounds

Theorem

Let λ(G ) be the maximum number of faces in a locally maximal

embedding of a graph G. Then

λ(G ) ≤ µ(G ) + 1

where µ(G ) denotes the maximum number of disjoint cycles in G .
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Basic properties: 3. Bounds

Theorem

Let λ(G ) be the maximum number of faces in a locally maximal

embedding of a graph G. Then

λ(G ) ≤ µ(G ) + 1

where µ(G ) denotes the maximum number of disjoint cycles in G .

Proof.
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Basic properties: 3. Bounds

Theorem

Let λ(G ) be the maximum number of faces in a locally maximal

embedding of a graph G. Then

λ(G ) ≤ µ(G ) + 1

where µ(G ) denotes the maximum number of disjoint cycles in G .

Proof.

Consider a locally maximal embedding Π with max # of faces.
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Basic properties: 3. Bounds

Theorem

Let λ(G ) be the maximum number of faces in a locally maximal

embedding of a graph G. Then

λ(G ) ≤ µ(G ) + 1

where µ(G ) denotes the maximum number of disjoint cycles in G .

Proof.

Consider a locally maximal embedding Π with max # of faces.

For a face F , consider its reduced boundary Bd(F ) consisting of all
bifacial edges of Bd(F ). A seed of Π is a connected component of
Bd(F ), where F is any face of Π.
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Basic properties: 3. Bounds

Theorem

Let λ(G ) be the maximum number of faces in a locally maximal

embedding of a graph G. Then

λ(G ) ≤ µ(G ) + 1

where µ(G ) denotes the maximum number of disjoint cycles in G .

Proof.

Consider a locally maximal embedding Π with max # of faces.

For a face F , consider its reduced boundary Bd(F ) consisting of all
bifacial edges of Bd(F ). A seed of Π is a connected component of
Bd(F ), where F is any face of Π.

Each seed contains a cycle.

Distinct seeds of Π are disjoint.
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Basic properties: 3. Bounds

Proof (cont.).

Let H be a seed of Π arising from a face F . Each edge e ∈ H belongs
to the boundary of some other face Fe 6= F .
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Basic properties: 3. Bounds

Proof (cont.).

Let H be a seed of Π arising from a face F . Each edge e ∈ H belongs
to the boundary of some other face Fe 6= F .

If e, g ∈ H are incident with a common vertex v , then Fe = Fg .
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Basic properties: 3. Bounds

Proof (cont.).

Let H be a seed of Π arising from a face F . Each edge e ∈ H belongs
to the boundary of some other face Fe 6= F .

If e, g ∈ H are incident with a common vertex v , then Fe = Fg .

By connectivity, each seed lies within the boundaries of exactly two
distinct faces.
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Basic properties: 3. Bounds

Proof (cont.).

Let H be a seed of Π arising from a face F . Each edge e ∈ H belongs
to the boundary of some other face Fe 6= F .

If e, g ∈ H are incident with a common vertex v , then Fe = Fg .

By connectivity, each seed lies within the boundaries of exactly two
distinct faces.

Form a graph FΠ whose vertices are the faces and edges correspond
to seeds.
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Basic properties: 3. Bounds

Proof (cont.).

Let H be a seed of Π arising from a face F . Each edge e ∈ H belongs
to the boundary of some other face Fe 6= F .

If e, g ∈ H are incident with a common vertex v , then Fe = Fg .

By connectivity, each seed lies within the boundaries of exactly two
distinct faces.

Form a graph FΠ whose vertices are the faces and edges correspond
to seeds.

Estimate the number of vertices of FΠ:

λ(G ) = (#vertices FΠ) ≤ (#edges FΠ) + 1 ≤ µ(G ) + 1.
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Locally maximal genus

Definition

The locally maximal genus of a graph G , denoted by γL(G ), is the
smallest genus of an orientable surface upon which G has a locally
maximal embedding.
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Locally maximal genus

Definition

The locally maximal genus of a graph G , denoted by γL(G ), is the
smallest genus of an orientable surface upon which G has a locally
maximal embedding.

Definition

The reduced Betti number of a graph G is the quantity

β′(G ) = β(G )− µ(G ).
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Locally maximal genus

Definition

The locally maximal genus of a graph G , denoted by γL(G ), is the
smallest genus of an orientable surface upon which G has a locally
maximal embedding.

Definition

The reduced Betti number of a graph G is the quantity

β′(G ) = β(G )− µ(G ).

Theorem

The following inequalities hold for every connected graph G:

(i) γ(G ) ≤ β′(G )/2 ≤ γL(G ) ≤ γM(G ) ≤ β(G )/2

(ii) β′(G )/2 ≤ γL(G ) ≤ γM(G ) ≤ β′(G )

(iii) γM(G )/2 ≤ γL(G ) ≤ γM(G )
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Lower embeddable graphs

Definition

A graph G is lower embeddable if γL(G ) = ⌈β′(G )/2⌉.

A lower embeddable graph has a locally maximal embedding with
µ(G ) + 1 or µ(G ) faces depending on whether β′(G ) is even or odd.
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Lower embeddable graphs

Definition

A graph G is lower embeddable if γL(G ) = ⌈β′(G )/2⌉.

A lower embeddable graph has a locally maximal embedding with
µ(G ) + 1 or µ(G ) faces depending on whether β′(G ) is even or odd.

Theorem

Graphs in each of the following classes are lower embeddable:

complete graphs Kn

complete bipartite graphs Km,n

n-cubes Qn

complete tripartite graphs Kn,n,n
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Lower embeddable graphs

Proof.

It is sufficient to construct locally maximal embeddings of these graphs
with either µ+ 1 or µ faces, depending on the parity of β′.

Construct an inclusion minimal connected spanning subgraph H ⊆ G

with either µ or µ− 1 disjoint cycles such that the rest of G can be
decomposed into pairs of adjacent edges.

Embed H in the 2-sphere.

Add a pair of adjacent edges to increase the genus by 1, and repeat.
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Lower embeddable graphs

Proof.

It is sufficient to construct locally maximal embeddings of these graphs
with either µ+ 1 or µ faces, depending on the parity of β′.

Construct an inclusion minimal connected spanning subgraph H ⊆ G

with either µ or µ− 1 disjoint cycles such that the rest of G can be
decomposed into pairs of adjacent edges.

Embed H in the 2-sphere.

Add a pair of adjacent edges to increase the genus by 1, and repeat.
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Lower embeddable graphs

Bad news: This method does not work in general.

Not every locally maximal embedding can be constructed by adding pairs
of adjacent edges!
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Bad news: This method does not work in general.

Not every locally maximal embedding can be constructed by adding pairs
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Graphs with no proper locally maximal embeddings

Theorem

The following statements are equivalent for a connected graph G.

(i) ⌈β′(G )/2⌉ = ⌊β(G )/2⌋

(ii) G is both upper embeddable and lower embeddable, and

γL(G ) = γM(G ).

(iii) Either µ(G ) ≤ 1, or µ(G ) = 2 and β(G ) is odd.
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Graphs with no proper locally maximal embeddings

Theorem

The following statements are equivalent for a connected graph G.

(i) ⌈β′(G )/2⌉ = ⌊β(G )/2⌋

(ii) G is both upper embeddable and lower embeddable, and

γL(G ) = γM(G ).

(iii) Either µ(G ) ≤ 1, or µ(G ) = 2 and β(G ) is odd.

Graphs with µ = 1 were completely described by Lovász (1965).
They include

bouquets of circles, dipoles, triangles with multiple edges, wheels
multiple edges on the outer rim

complete bipartite graphs K3,n with arbitrarily many edges added
within the 3-element partite set, . . .

Characterisation of graphs with µ = 2 is not known.
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Further results (sample)

Theorem

Locally maximal genus is additive over bridges.

Theorem

If G is a vertex-amalgation of G1 and G2, then

γL(G ) = γL(G1) + γL(G2)− c ,

where the constant c is either 0 or 1, depending on G1 and G2.

Theorem

Let G be a connected graph and e not a bridge of G . Then

γL(G )− 1 ≤ γL(G − e) ≤ γL(G ).
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Future research and problems

Problems:

1. What is the distribution of locally maximal embeddings of a graph?
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3. How difficult is to determine γL(G )?
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Future research and problems

Problems:

1. What is the distribution of locally maximal embeddings of a graph?

2. Does there exist a non-planar graph G satisfying γL(G ) = γ(G )?

3. How difficult is to determine γL(G )?

The natural upper bound on the number of faces in a locally maximal
embedding is µ(G ) + 1.

Determining µ(G ) is NP-complete.

Determining γL(G ) might still be polynomial.
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Future research and problems

Problems:

1. What is the distribution of locally maximal embeddings of a graph?

2. Does there exist a non-planar graph G satisfying γL(G ) = γ(G )?

3. How difficult is to determine γL(G )?

The natural upper bound on the number of faces in a locally maximal
embedding is µ(G ) + 1.

Determining µ(G ) is NP-complete.

Determining γL(G ) might still be polynomial.

4. Are all 4-edge-connected graphs and all edge-transitive graphs
lower-embeddable?

Martin Škoviera (Bratislava) Locally maximal embeddings Embedded Graphs, SPb, 2014 25 / 26



Thank you!
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