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Introduction

We study 2-cell embeddings G < S of a fixed graph G
in compact orientable surfaces.

Graphs are connected, parallel edges and loop are allowed. J
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Duke's Interpolation Theorem

Theorem (Duke, 1966)

If a graph G has a 2-cell embedding in orientable surfaces of genera g and

h with g < h, then it has a 2-cell embedding in the surface of genus k for
each k such that g < k < h.
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If a graph G has a 2-cell embedding in orientable surfaces of genera g and

h with g < h, then it has a 2-cell embedding in the surface of genus k for
each k such that g < k < h.

In order to determine the entire embedding range of G it is sufficient to
determine

e v(G) minimum genus of G
® Yym(G)  maximum genus of G
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each k such that g < k < h.

In order to determine the entire embedding range of G it is sufficient to
determine

e v(G) minimum genus of G
® Yym(G)  maximum genus of G

Apart from Duke's Theorem, very little is known about the genus
distribution of general graphs.
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Duke's Interpolation Theorem

Theorem (Duke, 1966)

If a graph G has a 2-cell embedding in orientable surfaces of genera g and
h with g < h, then it has a 2-cell embedding in the surface of genus k for
each k such that g < k < h.

In order to determine the entire embedding range of G it is sufficient to
determine

e v(G) minimum genus of G
® Yym(G)  maximum genus of G

Apart from Duke's Theorem, very little is known about the genus
distribution of general graphs.

This talk:
Embeddings close to maximum genus and their properties. J
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Maximum genus

Determining the genus of a graph is difficult [Thomassen, 1989].
In contrast, maximum genus is much better understood:

Martin Skoviera (Bratislava) Locally maximal embeddings Embedded Graphs, SPb, 2014 4 /26



Maximum genus

Determining the genus of a graph is difficult [Thomassen, 1989].
In contrast, maximum genus is much better understood:

Theorem (Xuong, 1979)

The maximum genus of a graph equals the maximum # of disjoint pairs of
adjacent edges whose removal leaves a connected spanning subgraph.
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‘Good’ characterisation of maximum genus
By Euler-Poincaré:

m(G) < B(G)/2
where B(G) is the Betti number of G (i.e., # edges — # vertices + 1).
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‘Good’ characterisation of maximum genus

By Euler-Poincaré:

m(G) < B(G)/2
where B(G) is the Betti number of G (i.e., # edges — # vertices + 1).

Definition
The deficiency of G is the quantity £(G) = 5(G) — 2vm(G).

&(G) = min (#faces in a 2-cell embedding of G) — 1 )
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‘Good’ characterisation of maximum genus

By Euler-Poincaré:
m(G) < B(G)/2
where B(G) is the Betti number of G (i.e., # edges — # vertices + 1).

Definition

The deficiency of G is the quantity £(G) = 5(G) — 2vm(G).

&(G) = min (#faces in a 2-cell embedding of G) — 1 )

Definition
Graphs for which ¢ < 1 are called upper embeddable

Equivalently, G is upper embeddable if vy = | 3/2].
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‘Good’ characterisation of maximum genus

Theorem 1 (Xuong, 1979)

&(G) = min # of edge-odd components in a cotree of G

Theorem 2 (Nebesky, 1981)

£(G) = max{c(G — A) + oc(G — A) — |A| — 1; A C E(G)}

¢ = # of components oc = # of components with odd Betti number
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Computing the maximum genus

There exist two different polynomial-time algorithms for determining the
maximum genus of a graph:

@ Glukhov (1981)
algorithm based on the min-max characterisation of vy

@ Furst, Gross, McGeoch (1988)
algorithm based on determining the max # of disjoint adjacent pairs
of edges via reduction to the matroid parity problem
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Computing the maximum genus

There exist two different polynomial-time algorithms for determining the
maximum genus of a graph:
@ Glukhov (1981)
algorithm based on the min-max characterisation of vy

@ Furst, Gross, McGeoch (1988)
algorithm based on determining the max # of disjoint adjacent pairs
of edges via reduction to the matroid parity problem

Theorem (Chen et al., 1993)

There is a polynomial-time algorithm that for an input graph G either
produces an embedding of genus vy (G) — 1 or verifies that vy (G) = 0.
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Computing the maximum genus

There exist two different polynomial-time algorithms for determining the
maximum genus of a graph:
@ Glukhov (1981)
algorithm based on the min-max characterisation of vy

@ Furst, Gross, McGeoch (1988)
algorithm based on determining the max # of disjoint adjacent pairs
of edges via reduction to the matroid parity problem

Theorem (Chen et al., 1993)

There is a polynomial-time algorithm that for an input graph G either
produces an embedding of genus vy (G) — 1 or verifies that vy (G) = 0.

Can we say something more about embeddings close to yp?

Martin Skoviera (Bratislava) Locally maximal embeddings Embedded Graphs, SPb, 2014 8 /26




Representation of graph embeddings by rotations

Every 2-cell embedding G < S can be represented by a pair of
permutations (R, L) acting on the set D(G) of all directed edges,
the darts of G:

@ R ... cyclically permutes darts with the same initial vertex
R=T]I,R, ... the rotation of the embedding
@ L ... reverses the direction of each dart, i. e., x > x7!

Conversely, given such a pair of permutations

cycles of R ... vertices
cyclesof L ... edges
cycles of RL ... faces
incidence ... nonempty intersection
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Stratified systems and locally maximal embeddings

Gross & Tucker (1979):
There is a natural notion of adjacency between embeddings of a fixed
graph G which gives rise to a stratified system of embeddings.

@ Two embeddings of G are adjacent if they can be obtained from
each other by moving a single dart to a different position in the
local rotation at some vertex.

@ Strata are formed by embeddings of the same genus.
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Stratified systems and locally maximal embeddings

Gross & Tucker (1979):
There is a natural notion of adjacency between embeddings of a fixed
graph G which gives rise to a stratified system of embeddings.

@ Two embeddings of G are adjacent if they can be obtained from
each other by moving a single dart to a different position in the
local rotation at some vertex.

@ Strata are formed by embeddings of the same genus.

Definition

An embedding G < S is said to be locally maximal if it is not adjacent to
any embedding in a higher stratum.
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Basic questions about locally maximal embeddings

Questions:

(4]

How deep below vy can locally maximal embeddings occur?

(4]

How are they distributed?
@ How to construct locally maximal?

@ Can we perhaps characterise locally maximal embeddings
combinatorially?

@ ... andsoon.
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Rotation moves
Let G < S be an embedding with rotation R.
@ 1. Move of a dart (elementary move):

R, = (axbAcd) — (abAcxd) =R,

o 2. Interchange of two darts at a vertex:

R, = (axbAcyd) — (aybAcxd) =R,

@ 3. Move of an edge: move of one of both darts of an edge.

Martin Skoviera (Bratislava) Locally maximal embeddings Embedded Graphs, SPb, 2014

12 /26



Rotation moves

Let G < S be an embedding with rotation R.
@ 1. Move of a dart (elementary move):
R, = (axbAcd) — (abAcxd) =R,
o 2. Interchange of two darts at a vertex:

R, = (axbAcyd) — (aybAcxd) =R,

@ 3. Move of an edge: move of one of both darts of an edge.

Observation

Every rotation move changes the number of faces of an embedding by
—2, 0, or +2, and the genus by —1, 0, or 1.
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Basic properties: 1. Topological description

Theorem

The following statements are equivalent for a 2-cell embedding
MNn: G —S.

(i) M is locally maximal, i. e., moving any dart to a different position in
the local rotation at some vertex will not increase the genus of Il.

(ii) The genus of 1 does not increase by any rotation move.

(iii) Every vertex is incident with at most two faces of I1.
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Basic properties: 1. Topological description

(i) locally maximal < (iii) every vertex in at most two faces J
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Basic properties: 1. Topological description

(i) locally maximal < (iii) every vertex in at most two faces |

Proof.
(i) = (i):

An elementary move changes # of faces by 0 or 2, but —2 is impossible.

y
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Basic properties: 1. Topological description

(i) locally maximal < (iii) every vertex in at most two faces )

(i) = (i):
An elementary move changes # of faces by 0 or 2, but —2 is impossible.
(i) = (iii):

@ Let v be a vertex incident with three distinct faces. There is

an edge f at v separating two faces. Let e = R71(f), g = R(f).
There is a corner xy at v belonging to a third face.

- >
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Basic properties: 1. Topological description

(i) locally maximal < (iii) every vertex in at most two faces )

Proof.
(i) = (i):
An elementary move changes # of faces by 0 or 2, but —2 is impossible.
(i) = (iii):
@ Let v be a vertex incident with three distinct faces. There is
an edge f at v separating two faces. Let e = R71(f), g = R(f).
There is a corner xy at v belonging to a third face.
o R, = (efgAxy)
F1 = (e fB), /i, = (f~1gC), F3 = (x"1yD)

- >
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Basic properties: 1. Topological description

(i) locally maximal < (iii) every vertex in at most two faces )

Proof.
(i) = (i):
An elementary move changes # of faces by 0 or 2, but —2 is impossible.
(i) = (iii):

@ Let v be a vertex incident with three distinct faces. There is

an edge f at v separating two faces. Let e = R71(f), g = R(f).
There is a corner xy at v belonging to a third face.

o R, = (efgAxy)
Fi = (e 'fB), F, = (f1gC), F3 = (x"1yD)
o Perform (efgAxy) — (egAxfy).

Then (e 1fB)(f~1gC)(x tyD) — (x~1fBe~lgCf~lyD)

O

. ot
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Basic properties: 2. Absence of strict maxima

Theorem (Gross, Rieper, 1991; Kotrbtik & S., 2014+)

Every 2-cell embedding of a connected graph in an orientable surface can

be transformed into a maximum genus embedding by a sequence of dart
moves that never decrease the genus.
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Basic properties: 2. Absence of strict maxima

Theorem (Gross, Rieper, 1991; Kotrbtik & S., 2014+)

Every 2-cell embedding of a connected graph in an orientable surface can
be transformed into a maximum genus embedding by a sequence of dart
moves that never decrease the genus.

Proof.

@ Move only bifacial edges, i.e., edges on the boundary of two faces.

o Let My: G — Sz be an arbitrary embedding of G.

@ Take a Xuong spanning tree T C G corresponding to a maximum
genus embedding My: G — S,

@ There exists a set Xj of cotree edges that are bifacial in I; s.t.
G — X; embeds with a single face in Sp,.

@ Xj is modified and extended to get a suitable set Xp s.t. G — Xy
embeds with a single face in S,.  Etc.

O

o
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Basic properties: 3. Bounds

Theorem

Let \(G) be the maximum number of faces in a locally maximal
embedding of a graph G. Then

AG) <u(6) +1

where 11(G) denotes the maximum number of disjoint cycles in G.
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Basic properties: 3. Bounds

Theorem

Let \(G) be the maximum number of faces in a locally maximal
embedding of a graph G. Then

A(G) < u(G) +1

where 11(G) denotes the maximum number of disjoint cycles in G.

Proof.

\ | \
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Basic properties: 3. Bounds

Let \(G) be the maximum number of faces in a locally maximal
embedding of a graph G. Then

A(G) < u(G) +1

where 11(G) denotes the maximum number of disjoint cycles in G.

Proof.

Consider a locally maximal embedding T with max # of faces.

| A\

v
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Basic properties: 3. Bounds

Let \(G) be the maximum number of faces in a locally maximal
embedding of a graph G. Then

A(G) < u(G) +1

where 11(G) denotes the maximum number of disjoint cycles in G.

Proof.

Consider a locally maximal embedding T with max # of faces.

@ For a face F, consider its reduced boundary Bd(F) consisting of all
bifacial edges of Bd(F). A seed of I is a connected component of
Bd(F), where F is any face of I.
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Basic properties: 3. Bounds

Theorem

Let \(G) be the maximum number of faces in a locally maximal
embedding of a graph G. Then

A(G) < u(G) +1

where 11(G) denotes the maximum number of disjoint cycles in G.

Proof.
Consider a locally maximal embedding T with max # of faces.

@ For a face F, consider its reduced boundary Bd(F) consisting of all
bifacial edges of Bd(F). A seed of I is a connected component of
Bd(F), where F is any face of I.

@ Each seed contains a cycle.

@ Distinct seeds of I are disjoint.
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Basic properties: 3. Bounds

Proof (cont.).

@ Let H be a seed of 1 arising from a face F. Each edge e € H belongs
to the boundary of some other face Fe # F.
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Basic properties: 3. Bounds

Proof (cont.).

@ Let H be a seed of 1 arising from a face F. Each edge e € H belongs
to the boundary of some other face Fe # F.

o If e,g € H are incident with a common vertex v, then F. = F,.
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Basic properties: 3. Bounds

Proof (cont.).

@ Let H be a seed of 1 arising from a face F. Each edge e € H belongs
to the boundary of some other face Fe # F.

o If e,g € H are incident with a common vertex v, then F. = F,.

@ By connectivity, each seed lies within the boundaries of exactly two
distinct faces.
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Basic properties: 3. Bounds

Proof (cont.).

@ Let H be a seed of 1 arising from a face F. Each edge e € H belongs
to the boundary of some other face Fe # F.

o If e,g € H are incident with a common vertex v, then F. = F,.

@ By connectivity, each seed lies within the boundaries of exactly two
distinct faces.

@ Form a graph JFp whose vertices are the faces and edges correspond
to seeds.
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Basic properties: 3. Bounds

Proof (cont.).

@ Let H be a seed of 1 arising from a face F. Each edge e € H belongs
to the boundary of some other face Fe # F.

o If e,g € H are incident with a common vertex v, then F. = F,.

@ By connectivity, each seed lies within the boundaries of exactly two
distinct faces.

@ Form a graph JFp whose vertices are the faces and edges correspond
to seeds.

@ Estimate the number of vertices of Fp:

AMG) = (#vertices Fn) < (#edges Fn)+1 < u(G)+1.

O

o
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Locally maximal genus

Definition

The locally maximal genus of a graph G, denoted by v, (G), is the

smallest genus of an orientable surface upon which G has a locally
maximal embedding.
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Locally maximal genus

Definition

The locally maximal genus of a graph G, denoted by v, (G), is the
smallest genus of an orientable surface upon which G has a locally
maximal embedding.

Definition

The reduced Betti number of a graph G is the quantity
3(G) = B(6) - u(G).
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Locally maximal genus

Definition

The locally maximal genus of a graph G, denoted by v, (G), is the
smallest genus of an orientable surface upon which G has a locally
maximal embedding.

Definition

The reduced Betti number of a graph G is the quantity
4(G) = B(G) - u(G).

The following inequalities hold for every connected graph G:
(i) 7(G) < B(G6)/2 < 1(G) < vm(G) < B(G)/2

(i) B'(G)/2 < (G) <wm(G) < B'(G)

(iii) m(G)/2 < 7(G) < ym(G)
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Lower embeddable graphs

Definition

A graph G is lower embeddable if v (G) = [8'(G)/2].

A lower embeddable graph has a locally maximal embedding with
1(G)+ 1 or ;u(G) faces depending on whether 5’(G) is even or odd.
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Lower embeddable graphs

Definition
A graph G is lower embeddable if v (G) = [8'(G)/2].

A lower embeddable graph has a locally maximal embedding with
1(G)+ 1 or ;u(G) faces depending on whether 5’(G) is even or odd.

Theorem

Graphs in each of the following classes are lower embeddable:

@ complete graphs K,
@ complete bipartite graphs Km.
@ n-cubes Q,

® complete tripartite graphs Kp n n

o
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Lower embeddable graphs

It is sufficient to construct locally maximal embeddings of these graphs
with either p + 1 or i faces, depending on the parity of 3.

@ Construct an inclusion minimal connected spanning subgraph H C G
with either p or ;x — 1 disjoint cycles such that the rest of G can be
decomposed into pairs of adjacent edges.

@ Embed H in the 2-sphere.

@ Add a pair of adjacent edges to increase the genus by 1, and repeat.
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Lower embeddable graphs

It is sufficient to construct locally maximal embeddings of these graphs
with either p + 1 or i faces, depending on the parity of 3.

@ Construct an inclusion minimal connected spanning subgraph H C G
with either p or ;x — 1 disjoint cycles such that the rest of G can be
decomposed into pairs of adjacent edges.

@ Embed H in the 2-sphere.

@ Add a pair of adjacent edges to increase the genus by 1, and repeat.
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Lower embeddable graphs

Bad news: This method does not work in general.

Not every locally maximal embedding can be constructed by adding pairs
of adjacent edges! J
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Lower embeddable graphs

Bad news: This method does not work in general.

Not every locally maximal embedding can be constructed by adding pairs
of adjacent edges! J
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Graphs with no proper locally maximal embeddings

The following statements are equivalent for a connected graph G.

(i) [8'(6)/2] = [5(6)/2]

(ii) G is both upper embeddable and lower embeddable, and
1(G) = ym(G).

(iii) Either u(G) <1, or u(G) =2 and B(G) is odd.
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Graphs with no proper locally maximal embeddings

Theorem

The following statements are equivalent for a connected graph G.
(i) [68'(6)/2] = |8(G)/2]
(ii) G is both upper embeddable and lower embeddable, and
1L(G) = m(G).
(iii) Either u(G) <1, or u(G) =2 and B(G) is odd.

Graphs with . = 1 were completely described by Lovédsz (1965).
They include

@ bouquets of circles, dipoles, triangles with multiple edges, wheels
multiple edges on the outer rim

@ complete bipartite graphs K3 , with arbitrarily many edges added
within the 3-element partite set,

Characterisation of graphs with ;4 = 2 is not known.
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Further results (sample)

Locally maximal genus is additive over bridges.

If G is a vertex-amalgation of Gy and Gy, then

7L(G) = 7(G1) +71(G2) — ¢,

where the constant c is either 0 or 1, depending on G; and Go.

Let G be a connected graph and e not a bridge of G. Then

1(G) =1 <7 (G — e) <.(G).
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Future research and problems

Problems:

1. What is the distribution of locally maximal embeddings of a graph? J

Martin Skoviera (Bratislava) Locally maximal embeddings Embedded Graphs, SPb, 2014 25 /26



Future research and problems

Problems:

1. What is the distribution of locally maximal embeddings of a graph?

2. Does there exist a non-planar graph G satisfying v, (G) = v(G)?
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Future research and problems

Problems:

1. What is the distribution of locally maximal embeddings of a graph? J

2. Does there exist a non-planar graph G satisfying v, (G) = v(G)? )

3. How difficult is to determine ~,(G)? )
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Future research and problems

Problems:

1. What is the distribution of locally maximal embeddings of a graph? )
2. Does there exist a non-planar graph G satisfying v, (G) = v(G)? J

3. How difficult is to determine ~,(G)? |

@ The natural upper bound on the number of faces in a locally maximal
embedding is p(G) + 1.

@ Determining p(G) is NP-complete.
@ Determining ~y,(G) might still be polynomial.
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Future research and problems

Problems:

1. What is the distribution of locally maximal embeddings of a graph? )
2. Does there exist a non-planar graph G satisfying v, (G) = v(G)? J

3. How difficult is to determine ~,(G)? |

@ The natural upper bound on the number of faces in a locally maximal
embedding is p(G) + 1.

@ Determining p(G) is NP-complete.
@ Determining ~y,(G) might still be polynomial.

4. Are all 4-edge-connected graphs and all edge-transitive graphs
lower-embeddable? J
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Thank you!
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